Part Number Hot Search : 
NR4018 ED050SC3 CY62177 2SC237 A5800210 A1712 01200 IRL3803V
Product Description
Full Text Search
 

To Download V23990-P545-C38-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p545-*3*-pm flowpim 0 600v/20a vincotech clip-in housing trench fieldstop igbt's for low saturation losses optional w/o brc industrial drives embedded drives v23990-p545-a38-pm v23990-p545-a39-pm V23990-P545-C38-PM v23990-p545-c39-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 33 t c =80c 46 t h =80c 37 t c =80c 59 maximum junction temperature t j max 150 c inverter transistor t h =80c 23 t c =80c 30 t h =80c 47 t c =80c 72 t sc t j 150c 6 s v cc v ge =15v 360 v 60 60 20 w types i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode a 250 a t p =10ms t j =25c 310 p tot i 2 t t j =t j max 50hz half sine wave features flowpim 0 housing schematic dc forward current t j =t j max target applications surge forward current power dissipation per diode dc collector current power dissipation per igbt maximum junction temperature short circuit ratings gate-emitter peak voltage repetitive peak collector current turn off safe operating area collector-emitter break down voltage t j =t j max vce 600v, tj top max t p limited by t j max v ce a v a 600 w v ge i cpulse t j max p tot i c t j =t j max a v c 175 17mm housing 12mm housing copyright vincotech 1 revision: 4
v23990-p545-*3*-pm t j =25c, unless otherwise specified parameter sym bol value unit maximum ratings condition inverter diode t h =80c 27 t c = 80c 35 t h = 80c 3 6 t c = 80c 55 b rake transistor t h =80c 17 t c = 80c 22 t h = 80c 37 t c = 80c 56 t s c t j 150c 6 s v cc v ge =15v 36 0 v brake diode t h =80c 1 6 t c = 80c 21 t h = 80c 28 t c = 80c 43 t hermal properties in sulation properties v is t=2s dc vo ltage 4000 v min 12,7 mm min 12,7 mm cti >200 c 175 20 t j =t j max 6 0 0 600 i f v rrm a v v i frm t j max p tot maximum junction temperature sh ort circuit ratings t j max tu rn off safe operating area p tot power dissipation per igbt ga te-emitter peak voltage a 45 a 45 v dc collector current v ce w t p limited by t j max t j =t j max vce 600v, tj top max collector-emitter break down voltage repetitive peak collector current repetitive peak forward current power dissipation per diode maximum junction temperature peak repetitive reverse voltage dc forward current i f 175 i cpuls i c repetitive peak forward current v ge peak repetitive reverse voltage i frm v rrm w c v 6 00 c t j =t j max a a m a ximum junction temperature t j max 1 7 5 t j =t j max t p limited by t j max dc fo r ward current w a a t p limited by t j max 3 0 t j = t j max po wer dissipation per diode p tot t j =t j max c s torage temperature t stg -40+125 c - 40+(tjmax - 25) comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition cle arance 40 copyright vincotech 2 revision: 4.
v23990-p545-*3*-pm parameter sym bol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,16 1,6 tj=125c 1,13 tj=25c 0,90 tj=125c 0,78 tj=25c 8 tj=125c 11 tj=25c tj=150c 2 thermal resistance chip to heatsink per chip r thjh thermal grease thi ckness 50um = 1 w/mk 1,89 k/w tj=25c 5 5,8 6,5 tj=150c tj=25c 1 1,55 2,2 tj=150c 1,75 tj=25c 0,0011 tj=150c tj=25c 300 tj=150c tj=25c 15 tj=150c 14 tj=25c 12 tj=150c 16 tj=25c 198 tj=150c 212 tj=25c 100 tj=150c 104 tj=25c 0,31 tj=150c 0,43 tj=25c 0,55 tj=150c 0,65 thermal resistance chip to heatsink per chip r thjh thermal grease thi ckness 50um = 1 w/mk 2,01 k/w tj=25c 1,25 1,81 1,95 tj=150c 1,76 tj=25c 19 tj=150c 21 tj=25c 33 tj=150c 192 tj=25c 0,45 tj=150c 1,35 di(rec)max tj=25c 1454 /dt tj=150c 1052 tj=25c 0,06 tj=150c 0,27 thermal resistance chip to heatsink per chip r thjh thermal grease thi ckness 50um = 1 w/mk 2,63 k/w 120 1100 tj=25c 32 71 none v 20 15 0 t r t d(off) v ce =v ge erec q gate c oss c rss q rr t rr i ges t f e on e off t d(on) i rrm v f v ge(th) v ce(sat) i ces r gint input capacitance o ut put capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage value c o nditions characteristic values forward voltage thr eshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t in put rectifier diode v v m ma 30 30 30 r everse current i r c f =1m hz rgon=16 0 20 15 rgoff=8 15 20 20 15 turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current rever se transfer capacitance diode forward voltage gate charge c ies reverse recovery time rever se recovered energy peak rate of fall of recovery current collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current collector-emitter saturation voltage 600 25 0 480 20 20 0,00029 300 300 1500 rgon=16 mws v a nc na v ma mws ns pf ns a/s tj=25c copyright vincotech 3 revision: 4
v23990-p545-*3*-pm parameter sym bol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value co nditions characteristic values tj=25c 5 5,8 6,5 tj=150c tj=25c 1,1 1,64 1,9 tj=150c 1,86 tj=25c 0,00085 tj=150c tj=25c 300 tj=150c none tj=25c 15 tj=150c 14 tj=25c 11 tj=150c 14 tj=25c 128 tj=150c 145 tj=25c 91 tj=150c 94 tj=25c 0,20 tj=150c 0,28 tj=25c 0,32 tj=150c 0,40 thermal resistance chip to heatsink per chip r thjh thermal grease thi ckness 50um = 1 w/mk 2,55 k/w tj=25c 1,25 1,86 1,95 tj=150c 1,75 tj=25c 27 tj=150c tj=25c 14 tj=150c 15 tj=25c 128 tj=150c 201 tj=25c 0,52 tj=150c 0,52 di(rec)max tj=25c 1307 /dt tj=150c 657 tj=25c 0,10 tj=150c 0,21 thermal resistance chip to heatsink per chip r thjh thermal grease thi ckness 50um = 1 w/mk 3,35 k/w a tj=25c vincotech ntc reference b-value tol. 3% k b (25/100) tj=25c 4000 k tj =25c b-value b (25/50) tol. 3% v v a ns a/ s a mws c v 22000 5 -5 % tj=25c tj=25c 3,5 210 87 24 collector-emitter cut-off incl diode gate emitter threshold voltage 15 0,00021 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage g at e charge input capacitance q gate reverse transfer capacitance e off turn-on energy loss per pulse r gint turn-off energy loss per pulse r i se time turn-on delay time t f fall time t d(on) t r turn-off delay time t d(off) peak rate of fall of recovery current p eak reverse recovery current reverse recovered charge c oss e on output capacitance c rss c ies integrated gate resistor nc brake transistor mw/k pow er dissipation p mw rated resistance r power dissipation constant deviation of r100 ? r/r r100=1486 i ges 0 15 15 480 rgon=16 rgoff=8 v ce =v ge f=1mhz 0 15 0 15 20 ma na ns pf m ws rgon=16 v f i r i rrm diode forward voltage rever se leakage current rgon=16 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time thermistor 15 300 15 15 600 600 300 25 t j=25c tc=100c tc=100c tj=25c 55 860 copyright vincotech 4 revision: 4
v23990-p545-*3*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 out put inverter igbt figure 4 output inverter fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v o utput inverter typical output characteristics 0 10 20 30 40 50 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 4
v23990-p545-*3*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 16 i c = 2 0 a r g off = 8 figure 7 out put inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 16 i c = 2 0 a o utput inverter e on high t e off high t e on low t e off low t 0,0 0 , 3 0,6 0,9 1,2 1,5 0 10 20 30 40 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0,3 0,6 0,9 1,2 1,5 0 30 60 90 120 150 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0, 1 0,2 0,3 0,4 0 10 20 30 40 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0,1 0,2 0,3 0,4 0 30 60 90 120 150 r g ( w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 6 re v ision: 4
v23990-p545-*3*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 12 5 c t j = 125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 16 i c = 2 0 a r g off = 8 figure 11 out put inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typi cal reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v r = 30 0 v v ge = 15 v i f = 20 a r gon = 16 v ge = 15 v output inverter t doff t f t don t r 0,00 0 , 01 0,10 1,00 0 10 20 30 40 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0, 1 0,2 0,3 0,4 0 30 60 90 120 150 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0, 01 0,10 1,00 0 30 60 90 120 150 r g ( w ww w ) t ( m s) t rr t j = t jmax -25c t j = 25c t rr 0,0 0, 1 0,2 0,3 0,4 0 10 20 30 40 i c (a) t rr ( m s) 25 / 125 25 / 125 copyright vincotech 7 re v ision: 4
v23990-p545-*3*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typi cal reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at a t t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v r = 30 0 v v ge = 15 v i f = 20 a r gon = 16 v ge = 15 v figure 15 out put inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typi cal reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v r = 30 0 v v ge = 15 v i f = 20 a r gon = 16 v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 5 10 1 5 20 25 30 0 30 60 90 120 150 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0 , 5 1,0 1,5 2,0 0 30 60 90 120 150 r g on ( w ) q rr ( m c) i rrm t j = t jmax -25c i rrm t j = 25c 0 5 10 1 5 20 25 30 0 10 20 30 40 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0, 5 1,0 1,5 2,0 0 10 20 30 40 i c (a) q rr ( m c) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 8 re v ision: 4
v23990-p545-*3*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typi cal rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /d t,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v r = 30 0 v v ge = 15 v i f = 20 a r gon = 16 v ge = 15 v figure 19 out put inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 2,0 1 k/w r thjh = 2,6 3 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,09 2,9e+00 0,07 2,4e+00 0,10 3,6e+00 0,08 2,9e+00 0,31 3,5e-01 0,25 2,9e-01 0,31 3,6e-01 0,25 3,0e-01 0,94 8,8e-02 0,76 7,1e-02 1,14 8,0e-02 0,92 6,5e-02 0,38 1,6e-02 0,31 1,3e-02 0,52 1,7e-02 0,42 1,4e-02 0,14 2,9e-03 0,11 2,4e-03 0,31 2,9e-03 0,25 2,3e-03 0,14 3,3e-04 0,12 2,7e-04 0,26 3,3e-04 0,21 2,7e-04 thermal grease phase change interface thermal grease phase change interface output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 400 800 1200 1600 2000 0 30 60 90 120 150 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt di rec /dt 0 400 800 1200 1600 2000 0 10 20 30 40 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 / dt 25 / 125 25 / 125 copyright vincotech 9 re v ision: 4
v23990-p545-*3*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v ge = 15 v figure 23 out put inverter fwd figure 24 output inverter fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 c t j = 175 c output inverter 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 35 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 4
v23990-p545-*3*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gat e voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 20 a t h = 80 oc v g e = 15 v t j = t jmax oc figure 27 out put inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical s hort circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v c e = 60 0 v v ce 600 v t j 175 oc t j = 175 oc output inverter v ce (v) i c (a) 10 0 10 -1 10 1 10 2 10 1 10 2 10us 1 0 0us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 0 20 40 60 80 100 120 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 50 100 150 200 250 12 14 16 18 20 v ge (v) i c (sc) copyright vincotech 11 revision: 4
v23990-p545-*3*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 oc u c c minus =u ccplus switching mode : 3 level switching 0 10 20 30 40 50 0 100 200 300 400 500 600 700 v ce (v) i c (a) i cmax v ce max i c module i c chip copyright vincotech 12 revision: 4
v23990-p545-*3*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics typi cal output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 bra ke igbt figure 4 brake fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v b rake 0 5 10 15 20 25 30 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 4
v23990-p545-*3*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 16 i c = 1 5 a r g off = 8 figure 7 bra ke fwd figure 8 brake fwd typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 16 i c = 1 5 a b rake t j = t jmax - 25c e rec t j = 25c e rec 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0, 05 0,10 0,15 0,20 0,25 0,30 0 30 60 90 120 150 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0,0 0, 2 0,4 0,6 0,8 0 10 20 30 i c (a) e (mws) e off t j = t jmax -25c e on e on e off t j = 25c 0,0 0 , 2 0,4 0,6 0,8 1,0 0 30 60 90 120 150 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 14 re v ision: 4
v23990-p545-*3*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 16 i c = 1 5 a r g off = 8 figure 11 bra ke igbt figure 12 brake fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 2, 5 53 k/w r thjh = 0,6 0 k/w r thjh = 3,3 5 k/w r thjh = 1,2 7 k/w thermal grease phase change interface thermal grease phase change interface brake t doff t f t don t r 0,00 0, 01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t ( m s) t doff t f t don t r 0,00 0, 01 0,10 1,00 0 30 60 90 120 150 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 25 / 125 25 / 125 copyright vincotech 15 re v ision: 4
v23990-p545-*3*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 oc t j = 175 oc v ge = 15 v figure 15 bra ke fwd figure 16 brake fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 oc t j = 175 oc brake 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 4
v23990-p545-*3*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 25 0 s d = t p / t r thjh = 1,8 9 k/w figure 3 rec tifier diode figure 4 rectifier diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 oc t j = 150 oc input rectifier bridge 0 20 40 60 80 100 0,0 0,5 1,0 1,5 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 t h ( o c) i f (a) copyright vincotech 17 revision: 4
v23990-p545-*3*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic typi cal ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4 0 00 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 2 5 100 /25 11 25 )( tt b ertr copyright vincotech 18 revision: 4
v23990-p545-*3*-pm t j 125 c r gon 16  r goff 8  figure 1 out put inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eo n = integrating time for e on ) v ge (0%) = 0 v v g e (0%) = 0 v v ge (100%) = 15 v v g e (100%) = 15 v v c (100%) = 300 v v c (100%) = 300 v i c (100%) = 20 a i c (100%) = 20 a t d off = 0,2 1 s t don = 0,0 1 s t eoff = 0,5 1 s t eon = 0,1 9 s figure 3 out put inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 30 0 v v c (100%) = 300 v i c (100%) = 20 a i c (100%) = 20 a t f = 0,1 0 s t r = 0,0 2 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -50 0 50 1 00 150 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 50 1 00 150 200 250 2,9 3 3,1 3,2 3,3 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -50 0 50 1 00 150 0,1 0,15 0,2 0,25 0,3 0,35 0,4 time (us) % v ce i c t f i c 10% i c 90% -5 25 5 5 85 115 145 175 205 3 3,05 3,1 3,15 3,2 time(us) % t r v ce i c copyright vincotech 1 9 re vision: 4
v23990-p545-*3*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 5,9 9 kw p on (100%) = 5,9 9 kw e off (100%) = 0,6 5 mj e on (100%) = 0,4 3 mj t eoff = 0,5 1 s t eon = 0,1 9 s figure 7 out put inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn- off switching waveforms & definition of t rr v geoff = 0 v v d ( 100%) = 300 v v geon = 15 v i d (100%) = 20 a v c (100%) = 300 v i rrm (100%) = 21 a i c (100%) = 20 a t r r = 0,1 9 s q g = 174 ,72 nc switching definitions output inverter i c 1% v ge 90% -20 0 2 0 4 0 60 80 100 120 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % p off e off t eoff v ce 3% v ge 10% -25 0 25 5 0 75 100 125 150 175 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon -5 0 5 10 15 20 -50 0 50 100 150 200 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -8 0 -40 0 40 80 120 3 3,1 3,2 3,3 3,4 time(us) % i d v d fitted copyright vincotech 2 0 re vision: 4
v23990-p545-*3*-pm figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t er ec = integrating time for e rec ) i d (100%) = 20 a p r ec (100%) = 5,9 9 kw q rr (100%) = 1,3 5 c e rec (100%) = 0,2 7 mj t qrr = 0,4 1 s t erec = 0,4 1 s switching definitions output inverter t qrr -100 - 5 0 0 50 100 150 2,9 3,1 3,3 3,5 3,7 % i d q rr tim e (us) -25 0 25 50 75 100 125 3 3,2 3,4 3,6 time(us) % p rec e rec t erec copyright vincotech 2 1 re vision: 4
v23990-p545- * 3* - pm version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm 2 clips housing v23990-p545-a38-pm p545-a38 p545-a38 without thermal paste 17mm 2 clips housing v23990-p545-a39-pm p545-a39 p545-a39 without thermal paste 12mm 2 clips housing V23990-P545-C38-PM p545-c38 p545-c38 without thermal paste 17mm 2 clips housing v23990-p545-c39-pm p545-c39 p545-c39 outline pinout ordering code and marking - features - outline - pinout ordering code & marking copyright vincotech 1 revision: 4
v23990-p545-*3*-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 4


▲Up To Search▲   

 
Price & Availability of V23990-P545-C38-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X